Newer posts are loading.
You are at the newest post.
Click here to check if anything new just came in.

May 10 2012

Understanding Mojito

Yahoo's Mojito is a different kind of framework: all JavaScript, but running on both the client and the server. Code can run on the server, or on the client, depending on how the framework is tuned. It shook my web architecture assumptions by moving well beyond the convenience of a single language, taking advantage of that approach to process code where it seems most efficient. Programming this way will make it much easier to bridge the gap between developing code and running it efficiently.

I talked with Yahoo architect fellow and VP Bruno Fernandez-Ruiz (@olympum) about the possibilities Node opened and Mojito exploits.

Highlights from the full video interview include:

  • "The browser loses the chrome." Web applications no longer always look like they've come from the Web. [Discussed at the 02:11 mark]
  • Basic "Hello World" in Mojito. How do you get started? [Discussed at the 05:05 mark]
  • Exposing web services through YQL. Yahoo Query Language lets you work with web services without sweating the details. [Discussed at the 07:56 mark]
  • Manhattan, a closed Platform as a Service. If you want a more complete hosting option for your Mojito applications, take a look. [Discussed at the 10:29 mark]
  • Code should flow among devices. All of these devices speak HTML and JavaScript. Can we help them talk with each other? [Discussed at the 11:50 mark]

You can view the entire conversation in the following video:

Fluent Conference: JavaScript & Beyond — Explore the changing worlds of JavaScript & HTML5 at the O'Reilly Fluent Conference (May 29 - 31 in San Francisco, Calif.).

Save 20% on registration with the code RADAR20


Related:


August 26 2011

02mydafsoup-01

Nanode - Network Application Node

Nanode is an open source Arduino-like board that has in-built web connectivity.

It is a low cost platform for creative development of web connected ideas.

Nanode - An Open Hardware Success Story

https://blip.tv/episode/5492444

via Diaspora* - https://joindiaspora.com/posts/404282

July 06 2011

What is Node.js?

Node.js. It's the latest in a long line of "Are you cool enough to use me?" programming languages, APIs, and toolkits. In that sense, it lands squarely in the tradition of Rails, and Ajax, and Hadoop, and even to some degree iPhone programming and HTML5. Go to a big technical conference, and you'll almost certainly find a few talks on Node.js, although most will fly far over the head of the common mortal programmer.

Dig a little deeper, and you'll hear that Node.js (or, as it's more briefly called by many, simply "Node") is a server-side solution for JavaScript, and in particular, for receiving and responding to HTTP requests. If that doesn't completely boggle your mind, by the time the conversation heats up with discussion of ports, sockets, and threads, you'll tend to glaze over. Is this really JavaScript? In fact, why in the world would anyone want to run JavaScript outside of a browser, let alone the server?

The good news is that you're hearing (and thinking) about the right things. Node really is concerned with network programming and server-side request/response processing. The bad news is that like Rails, Ajax, and Hadoop before it, there's precious little clear information available. There will be, in time — as there now is for these other "cool" frameworks that have matured — but why wait for a book or tutorial when you might be able to use Node today, and dramatically improve the maintainability of your code and even the ease with which you bring on programmers?

A warning to the Node experts out there

Node is like most technologies that are new to the masses, but old hat to the experienced few: it's opaque and weird to most but completely usable for a small group. The result is that if you've never worked with Node, you're going to need to start with some pretty basic server-side scripts. Take your time making sure you know what's going on, because while this is JavaScript, it's not operating like the client-side JavaScript you're used to. In fact, you're going to have to twist your JavaScript brain around event loops and waiting and even a bit of network theory.

Unfortunately, this means that if you've been working and playing with Node for a year or two, much of this article is going to seem pedestrian and overly simplistic. You'll look for things like using Node on the client, or heavy theory discussions on evented I/O and reactor patterns, and npm. The reality is that while that's all interesting — and advances Node to some pretty epic status — it's incomprehensible to someone just getting started out. Given that, maybe you should pass this piece on to your co-workers who don't know Node, and then when they're buying into Node's usefulness, start to bring them along on the more advanced Node use cases.

Node Day at OSCON — This year's OSCON features a day-long dive into Node on Tuesday, July 26. Join experts and users from the Node community to discuss best practices and future developments, and survey the ever-growing number of Node frameworks and plugins.

Save 20% on registration with the code OS11RAD

Node: A few basic examples

First things first: you need to realize that Node is intended to be used for running standalone JavaScript programs. This isn't a file referenced by a piece of HTML and running in a browser. It's a file sitting on a file system, executed by the Node program, running as what amounts to a daemon, listening on a particular port.


Skipping hello world


The classic example here is "Hello World," detailed on the Node website. Almost everyone starts with Hello World, though, so check that out on your own, and skip straight to something a lot more interesting: a server that can send static files, not just a single line of text:

	var sys = require("sys"),  
	    http = require("http"),  
	    url = require("url"),  
	    path = require("path"),  
	    fs = require("fs");  

http.createServer(function(request, response) {
var uri = url.parse(request.url).pathname;
var filename = path.join(process.cwd(), uri);
path.exists(filename, function(exists) {
if(!exists) {
response.writeHead(404, {"Content-Type": "text/plain"});
response.end("404 Not Found\n");
return;
}

fs.readFile(filename, "binary", function(err, file) {
if(err) {
response.writeHead(500, {"Content-Type": "text/plain"});
response.end(err + "\n");
return;
}

response.writeHead(200);
response.end(file, "binary");
});
});
}).listen(8080);

console.log("Server running at http://localhost:8080/");

Thanks much to Mike Amundsen for the pointer to similar code. This particular example was posted by Devon Govett on the Nettuts+ training blog, although it's been updated for the current version of Node in a number of places. Devon's entire tutorial post is actually a great companion piece on getting up to speed on Node once you have a handle on the basics.

If you're new to Node, type this code into a text file and save the file as NodeFileServer.js. Then head out to the Node website and download Node or check it out from the git repository. You'll need to build the code from source; if you're new to Unix, make, and configure, then check out the online build instructions for help.

Node runs JavaScript, but isn't JavaScript

Don't worry that you've put aside NodeFileServer.js for a moment; you'll come back to it and more JavaScript shortly. For now, soak in the realization that you've just run through the classic Unix configuration and build process:

./configure
make
make install

That should come with another realization: Node itself isn't JavaScript. Node is a program for running JavaScript, but isn't JavaScript itself. In fact, Node is a C program. Do a directory listing on the Node/src directory and you'll see something like this:

Node ls listing
Click to enlarge

For all of you thinking that JavaScript is a poor language in which to be writing server-side tools, you're half right. Yes, JavaScript is not equipped to deal with operating system-level sockets and network connectivity. But Node isn't written in JavaScript; it's written in C, a language perfectly capable of doing the grunt work and heavy lifting required for networking. JavaScript is perfectly capable of sending instructions to a C program that can be carried out in the dungeons of your OS. In fact, JavaScript is far more accessible than C to most programmers — something worth noting now, and that will come up again and again in the reasons for looking seriously at Node.

The primary usage of Node further reflects that while Node works with JavaScript, it isn't itself JavaScript. You run it from the command line:

 — (bdm0509@Bretts-MacBook-Pro Sun, 29 May 11) —  —  —  —  —  —  —  —  —  — (/Users/bdm0509/tmp/Node/src) — 
 — (09:09 $)-> export PATH=$HOME/local/Node/bin:$PATH

— (bdm0509@Bretts-MacBook-Pro Sun, 29 May 11) — — — — — — — — — — (/Users/bdm0509/tmp/Node/src) —
— (09:09 $)-> cd ~/examples

— (bdm0509@Bretts-MacBook-Pro Sun, 29 May 11) — — — — — — — — — — — — (/Users/bdm0509/examples) —
— (09:09 $)-> Node NodeFileServer.js
Server running at http://127.0.0.1:1337/

And there you have it. While there's a lot more to be said about that status line — and what's really going on at port 1337 — the big news here is that Node is a program that you feed JavaScript. What Node then does with that JavaScript isn't worth much ink; to some degree, just accept that what it does, it does. This frees you up to write JavaScript, not worry about learning C. Heck, a big appeal to Node is that you can actually write a server without worrying about C. That's the point.

Interacting with a "Node server"

Make sure you still have your NodeFileServer.js code running via Node. Then you can hit your local machine — on port 1337 — and see this unremarkable output.

File server browser
Click to enlarge

Yes, this is about as mundane as you can get. Well, that is, until you realize that you've actually written a file server in about 20 lines of code. The output you see — the actual code of the script you wrote — isn't canned in the script itself. It's being served from the file system. Throw an image into the same directory, and simply add the name of the image to the end of your URL, like http://localhost:8080/my_image.png:

image example

Node happily serves this binary image up. That's pretty remarkable, when you again refer to the brevity of the code. On top of that, how hard would it be if you wanted to write your own server code in JavaScript? Not only that, but suppose you wanted to write that code to handle multiple requests? (That's a hint; open up four, five, or 10 browsers and hit the server.) The beauty of Node is that you can write entirely simple and mundane JavaScript to get these results.

A quick line-by-line primer

There's a lot more to talk about around Node than in the actual code that runs a server. Still, it's worth taking a blisteringly fast cruise through NodeFileServer.js before moving on. Take another look at the code:

var http = require('http');
http.createServer(function (req, res) {
  res.writeHead(200, {'Content-Type': 'text/plain'});
  res.end('Hello World\n');
}).listen(1337, "127.0.0.1");
console.log('Server running at http://127.0.0.1:1337/');

First, you have a call to a function called require(). The use of require() has been a long-standing request by programmers. You can actually find this mentioned in some of the discussions on JavaScript modularity, as well as germane to CommonJS, and a pretty cool implementation by O'Reilly author David Flanagan from 2009. In other words, require() may be new to you, but it isn't an untested, careless piece of Node code. It's core to using modular JavaScript, and something of which Node takes heavy advantage.

Then, the resulting http variable is used to create a server. That server is handed a function block to run when it's contacted. This particular function ignores the request completely and just writes out a response, in text/plain, saying simply "Hello World\n". Pretty straightforward stuff.

In fact, this lays out the standard pattern for Node usage:

  1. Define the type of interaction and get a variable for working with that interaction (via require()).
  2. Create a new server (via createServer()).
  3. Hand that server a function for handling requests.
    • The request handling function should include a request ...
    • ... and a response.
  4. Tell the server to start handling requests on a specific port and IP (via listen).

Lost in translation

Despite the ease with which you can get a server coded in JavaScript (regardless of whether the actual code-running facility is C or anything else) still begs the question: Should you write a server in JavaScript? To really get a handle on the answer to this question, consider a pretty typical use case.

The JSON round trip

You've got a typical web application, HTML front-end with CSS styling, and JavaScript for the validation and communication with a server. And because you're up on the interactive web, you're using Ajax and not relying purely on a form's POST to get data to and from the server. If this is you, then you're probably comfortable with JSON, too, as that's the almost de facto means of sending data across the wire these days.

So you've got an Ajax request that says, for example, "give me more information about some particular guitar on an online auction site." That request gets thrown across the network to a PHP program running on a server somewhere. The PHP server has to send a lot of information back to the JavaScript requestor, and it's got to send that information in some format that JavaScript can unpack. So the return information is bundled up into an array, which can then be converted to JSON, sort of like this:

$itemGuitar = array(
  'id' => 'itemGuitar',
  'description' => 'Pete Townshend once played this guitar while his own axe ' .
                    was in the shop having bits of drumkit removed from it.',
  'price' => 5695.99,
  'urls' => array('http://www.thewho.com', 'http://en.wikipedia.com/wiki/Pete_Townshend')
);

$output = json_encode($itemGuitar);
print($output);

Back on the client, the JavaScript gets this chunk of information, which has changed slightly because of JSON and transmission. The client basically gets something like this:

{
  "id": "itemGuitar",
  "description": "Pete Townshend once played this guitar...",
  "price": 5695.99,
  "urls": ["http://www.thewho.com", "http://en.wikipedia.com/wiki/Pete_Townshend"]
}

This is pretty standard fare. Then, it's easy to convert this text "thing" into an object in JavaScript. You just call eval(), like this:

var itemDetails = eval('(' + jsonDataString + ')');

The result is a nice JavaScript object with properties that match up to the JSON array-like structure. Of course, since the jsonDataString usually is returned from a server, you're more likely to see code like this:

var itemDetails = eval('(' + request.responseText + ')');

This is the typical JSON round trip. But there are problems here ... big, big problems.

Subtlety and nuance destroy solid code

First, there's a major problem in that this sort of code relies heavily on a translator. In this case, the translator is the JSON interpreter and related code, and there are in fact two dependencies: a JSON interpreter for Java in the form of what eval() does with the response text, and the JSON interpreter for PHP. As of PHP 5.2.0, that interpreter is included with PHP, but it's still essentially an external dependency, separate from the core of PHP.

Now, this isn't a rant about translation itself. There's nothing to suggest that there are problems in taking, say, an "l" and turning it into an "i", or something that's item 1 in an array and reporting it as being item 2 in an array. There's a lot of testing that occurs before JSON tools are ever released to ensure that what gets reported is correct, and accurate round tripping from a client to a server and back again are possible. Lots and lots and lots of testing is involved ...

And that is in fact a problem.

The dependency of JavaScript and PHP (and C and Lisp and Clojure and Eiffel and ... well, see the figure below for all the JSON toolkits floating around for a ton of different languages) on a toolkit is a huge issue. In other words, the problem isn't the translation but the translator. While programming languages evolve slowly, the uses to which these languages are applied is growing quickly. The result is that JSON is being put to use in areas of complexity that simply didn't exists or went untouched even a few months ago. And with each new iteration — each new depth of recursion and combination of data types — it's possible that an area is discovered that the translator doesn't support.

JSON toolkits
A selection of JSON toolkits.
Click to see the full list

That's not in itself bad. In fact, it argues for the popularity of JSON that it's constantly put to new use. But with the "new" comes the "does it support the new?" So JSON has to evolve from time to time, and that means testing, and retesting, and release on tons of platforms. You, the programmer, may have to rearrange your data; or wait on a release to support your needs; or hack at JSON yourself. Again, many of these are just the so-called costs of programming.

But imagine you could ditch the translation — and therefore the translator — altogether. Imagine you could write, not JSON round tripping, but JavaScript end to end.

That's the promise of Node. All the text you've just read — about PHP including JSON in 5.2.0 but not before, about arrays becoming objects, about data being configured in new ways and requiring new things from JSON — it all goes away when you have JavaScript sending data and receiving and responding to that data.

eval() in JavaScript is (Potentially) the Devil

As if that's not enough reason to look seriously at Node, there's the pesky issue of running eval() on a string. It's long been accepted that eval() is dangerous stuff. It runs code that you can only see as textual data; it's the equivalent of that "Run Your SQL by typing it in here" unvalidated text box, open to SQL injection and malicious intent. It's quite possible that every time eval() is passed in a string, a puppy somewhere in the Midwest shivers and a mom on the Eastern Seaboard stubs her toe and curses. It's that precarious. There's plenty to read about online, and it's not worth going into in detail here. Just Google "eval JavaScript evil" or "eval JavaScript injection" to get a good taste of the issues.

Still, Node without any context doesn't allow you to avoid eval(), so there are potentially still shivering puppies out there. However, Node used as it's intended absolutely gets you around the typical eval() problems. Node is often called evented JavaScript or evented I/O, and that little word — "evented" — is hugely important. But to get a hold of what evented really means, and why it gets you out of the dangers of eval(), you've got to understand not just how JSON is typically round tripped in applications, but how the very structure of applications on the web are typically architected.

Today's web is a big-event web

Typical web forms are "big-event" submitters. In other words, lots of data entry and selection happens — a user fills out text boxes, selects choices from combo boxes, selects items from a list, and so on — and then all of that information is submitted to a server. There's a single "big event" from the programming perspective: the submission of all that form data, usually through a POST. That's pretty much how the web operated, pre-Ajax.

Sending lots of data at one time

With Ajax, there is a little more of what's called evented programming. There are more events that trigger interaction with the server. The classic case is the entry of a zip code, and then a resulting call to the server to get a city and state. With Ajax and the XmlHttpRequest, tons of data didn't have to be gobbed up and thrown to the server all at once. However, that doesn't change the reality that the web is still mostly a big-event place. Ajax is used far more often to achieve interesting visuals, do quick validations, and submit forms without leaving a page than it is to create truly evented web pages. So even though a form isn't submitting a big gob of information with a POST, an Ajax request is doing the same thing.

Honestly, that's only partly the fault of less-than-creative Ajax programmers. Every time you send off a request — no matter how small — there's a lot of network traffic going on. A server has to respond to that request, usually with a new process in its own thread. So if you really move to an evented model, where you might have 10 or 15 individual micro-requests going from a single page to a server, you're going to have 10 or 15 threads (maybe less, depending on how threads are pooled and how quickly they're reclaimed on the server) firing up. Now multiply that by 1,000 or 10,000 or 1,000,000 copies of a given page floating around ... and you could have chaos. Network slowdown. System crashes.

The result is that, in most cases, the Web needs to be, at a minimum, a medium-event place. The result of this concession is that server-side programs aren't sending back tiny responses to very small and focused requests. They're sending back multiple bits of data, and that requires JSON, and then you're back to the eval() problem. The problem is eval(), sure, but the problem is also — from a certain perspective, at least — the nature of the web and threading and HTTP traffic between a web page and a server-side program responding to that request.

(Some of you more advanced JavaScript folks are screaming at this point, because you know better than to use eval(). Instead, you're using something like JSON.parse() instead of eval(). And there are also some compelling arguments for careful usage of eval(). These are things worth screaming about. Still, just see how many questions there are surrounding eval() on sites like Stack Overflow and you'll realize that most folks don't use eval() correctly or safely. It's a problem, because there are lots of intermediate programmers who just aren't aware of the issues around eval().)

Sending a little data at all times

Node brings a different approach to the party: it seeks to move you and your web applications to an evented model, or if you like, a "small event" model. In other words, instead of sending a few requests with lots of data, you should be sending tons of requests, on lots of events, with tiny bits of data, or requests that need a response with only a tiny bit of data. In some cases, you have to almost recall your GUI programming. (All the Java Swing folks can finally use their pent-up GUI knowledge.) So a user enters their first and last name, and while they're moving to the next box, a request is already requesting validation of just that name against existing names. The same is true for zip codes, and addresses, and phone numbers. There's a constant stream of requesting and responding happening, tied to almost every conceivable event on a page.

So what's the difference? Why is this possible with Node, and aren't the same issues around threading existent here? Well, no, they're not. Node's own site explains their philosophy the best:

Node's goal is to provide an easy way to build scalable network programs. In the "hello world" web server example ... many client connections can be handled concurrently. Node tells the operating system (through epoll, kqueue, /dev/poll, or select) that it should be notified when a new connection is made, and then it goes to sleep. If someone new connects, then it executes the callback. Each connection is only a small heap allocation.

Node has no blocks, no threads competing for the same resource (Node is happy to just let things happen however they happen), nothing that has to start up upon request. Node just sits around waiting (quite literally; unused Node responders are sleeping). When a request comes in, it's handled. This results in very fast code, without uber-programmers writing the server-side behavior.

Yes, chaos can ensue

It's worth pointing out that this model does allow all the problems that any non-blocking system allows to come into play: one process (not thread) writing to a data store while another one grabs just-invalidated data; intrusions into what amounts to a transaction; and so on. But realize that the majority of event-based programming on a web form is read-only! How often are you actually modifying data in a micro-request? Very rarely. Instead, there's a constant validation, data lookup, and querying going on. In these cases, it's better to just fire away with the requests. The database itself may add some locking, but in general, good databases will do this much more efficiently than server-side code, anyway; and they'll certainly handle things better than an operating system will spin up and down threads for a generic, "a web response came in" process.

Additionally, Node does have plans to allow for process forking, and the HTML5 Web Workers API is the engine that will probably make this feature go. Still, if you move to an evented model for your web application, you'll probably run into an issue where you might want threading in less than one out of 100 situations. Still, the changes are best in how you think about your web applications, and how often you send and receive data from a server, rather than in how Node works.

In the right place at the right time

There's another web pattern at work here, and it's probably far more important than whether you use Node or not, and how evented your web applications are. It's simply this: use different solutions for different problems. Even better, use the right solution for a particular problem, regardless of whether that's the solution you've been using for all your other problems.

The inertia of familiarity

There's a certain inertia in not just web design, but all of programming. That inertia can be stated axiomatically like this: the more you learn, use, and become good at a certain approach or technique or language, the more likely you are to use that approach/technique/language widely. It's one of those principles that sounds good until you dig deeply. Yes, it's good to learn a language or toolkit well, and to employ it widely. But this inertia often causes you to use a tool because you know it, rather than because it's the right tool.

Look at Ajax, something already discussed. Initially, Ajax provided a solid approach to sending quick requests, without form submissions, to a server. Now it's become a drop-in replacement for all form submissions. That's taking a technology, learning it, applying it, and then eventually over-applying it. There's still a solid place for form submissions — when a form needs to be submitted! As simple as it sounds, there are tends of thousands of web applications submitting forms with Ajax, just because the lead web developer is up on Ajax.

In the same vein, it's possible to get excited about Node — probably because you buy into all the splendid and wise observations you've been reading — and then use it everywhere. Suddenly, you're replacing all your PHP and Perl back-ends with Node. The result? A mess. In fact, you'll be forced to have several web forms do just what Node isn't meant for: submit big chunks of data to JavaScript on the server via Node, and force that JavaScript to either send back a chunk of JSON that's got to be parsed or eval()ed, or send back a full-blown HTML page or an HTTP redirect.

But that's simply not what Node is best at. It's great at micro-requests; at evented I/O. Use Node for quick communication between a web page and a server. Use form submissions to send big chunks of data to the server. Use PHP and Perl to do heavy database lifting and generate dynamic HTML pages. Use Node to provide a means for server-side JavaScript to run and handle small requests. Throw in Rails and Spring and servlets and whatever else you need. But make your decisions based upon the problem you're solving, rather than what you happen to know best at the time.

Node's promise of simplicity

There's one last note worth making. When you take this broad approach to programming, you'll often find that you're not having to go as deeply into each toolkit, API, and framework you use. By using your tools for what they're best at, you don't need to be able to staple with hammers or measure with drills. Using tools for their intended purpose typically means you use the core capabilities more. So while you're creating generalists — programmers that know lots of things — you are also reducing the need for specialists — programmers that know one or two things really, really well. Of course, every pointy-haired boss also realizes that those specialists are really, really expensive and hard to find.

Learning Node might take a little effort, but it's going to pay off. Why? Because you're afforded solutions to your web application problems that require only JavaScript to solve. That means your existing JavaScript expertise comes into play. And when you do need to use PHP or Perl — because it's the right solution for a particular problem — you don't need a PHP or Perl guru. You need to know the basics, and those needs can be expanded when the problem requires expansion. Stretching comes at the behest of new problems, rather than stretching poor solutions thinly.

Your biggest challenge is the continual move to a web that is made up of smaller pieces, talking more often, and the combination of what can seem like a dizzying array of technologies. However, taking the core features of 100 technologies is always going to serve you better than taking 100% of one technology and trying to solve 100 problems. Node and evented I/O isn't a solution to every problem, but it sure is a solution to some important problems.


OSCON 2011, coming up later this month, will feature an entire day dedicated to Node. Learn more about Node Day and save 20% on registration with the codeOS11RAD.



Related:


June 08 2011

The secrets of Node's success

In the short time since its initial release in late 2009, Node.js has captured the interest of thousands of experienced developers, grown a package manager and a corpus of interesting modules and applications, and even spawned a number of startups.

What is it about this technology that makes it interesting to developers? And why has it succeeded while other server-side JavaScript implementations linger in obscurity or fail altogether?

The key factors are performance, timing, and focusing on a real problem that wasn't easily solved with other server-side dynamic languages.

Browser wars and JavaScript performance

In the early 2000s, AJAX web development was coming into its own and placing increasing demands on browsers' JavaScript engines. New JavaScript libraries such as YUI, Dojo and jQuery were allowing developers to do much more with web user interface (UI), creating a user experience for web applications that mimicked the behavior of desktop applications.

As JavaScript libraries and websites became more complex and users started to notice poor performance in their browsers, browser developers started to focus seriously on their JavaScript engines.

The race for faster JavaScript engines heated up in September 2008 when Google released Chrome and the Chromium source code. The engine behind it was V8 and it outperformed all others. This helped spur the developers of Firefox, Safari, Opera and Internet Explorer to improve JavaScript performance in their browsers and it opened a new front in the browser wars.

Technically speaking, V8 takes a slightly novel approach to improving performance. Certain JavaScript objects are dynamically compiled directly into native machine code before execution based on a predictive analysis of the code.

This, along with a new approach to property access and a more efficient garbage collection system enabled Chrome to initially post significantly faster benchmarks than other browsers.

Save 50% - JavaScript Ebooks and Videos

JavaScript is everywhere: servers, rich web client libraries, HTML5, databases, even JavaScript-based languages. If you've avoided JavaScript, this is the year to learn it. And if you don't, you risk being left behind. Whatever your level, we have you covered:

Introductory  /  Intermediate  /  Advanced

One week only—offer expires 14 June. Use discount code HALFD in the shopping cart. Buy now and SAVE.

The other browsers responded with improved or completely rewritten JavaScript engines that matched or exceeded V8's benchmarks. These optimizations are still going on, and Google's V8 is benefiting from the healthy, often technically brilliant, competition. Compared to the interpreters for server-side dynamic languages like Ruby, Python, PHP and Perl, JavaScript now has several efficient and incredibly fast runtimes.

Ryan Dahl, creator of Node.js, chose the V8 engine for Node. This has an additional benefit for a server-side implementation.

The predictive optimization of JavaScript works fairly well in the Chrome browser, but it is much more effective for server applications where the same chunks of code tend to be run multiple times. V8 is able to refine its optimizations and soon ends up with very efficient cached machine code.

Node has an additional performance advantage (a big one) that is not directly tied to V8, but we'll get to that in a bit.



The rehabilitation of JavaScript


JavaScript was once widely regarded as an awful hack of a language. Many programmers still feel this way, but the prejudice is starting to fade, mostly because there is a growing body of good code that shows off the language.

One person who has done much to pinpoint JavaScript's technical weak points is Douglas Crockford. Fortunately, instead of stopping there, he has also created JSLint and written "JavaScript: The Good Parts" to help developers write better code while avoiding most of the "bad parts" of the language. In his presentations and posts, one of his core assertions is that:

... despite JavaScript's astonishing shortcomings, deep down, in its core, it got something very right. When you peel away the cruft, there is an expressive and powerful programming language there. That language is being used well in many Ajax libraries to manage and augment the DOM, producing an application platform for interactive applications delivered as web pages. Ajax has become popular because JavaScript works. It works surprisingly well.

Without getting into the details of which parts are good or bad, we have seen in the past few years that professional developers have come to realize that JavaScript is not going away. Many of developers have gotten on with the task of building complex, well-designed applications and libraries. There are still problems with JavaScript and with its specification, but programmers are now much less likely to dismiss it out of hand.

Previous server-side JavaScript frameworks had a much harder time overcoming the negative mindset about the language. By the time Node arrived, JavaScript had overcome the most of its image problem.

Node.js solves a real problem

Wikipedia has a fairly comprehensive "Comparison of server-side JavaScript solutions". Node is in there, but most of the others listed are not nearly so well known. The use of the term "solutions" is interesting, as most of these projects are solutions to problems that have already been solved by other languages.

Python, Java, Ruby, PHP, Perl and others are all still extremely good choices for most types of dynamic web applications. They talk to databases, crunch numbers, validate data, and parse templates. They are high-level languages, and there are several MVC frameworks for each of them for quick web app creation. Node is sometimes touted as the next Ruby-on-Rails, but this a bad comparison and misses the point of what Node is for.

Node is not trying to solve the same problems as Rails, and it's not competing head-on with any of the other languages or frameworks in the areas where they do well. It was made for, and is most successful at, solving a special set of problems with modern web applications. What can it do that these other languages cannot?

It turns out that what JavaScript can do is the flip side of something it can't do: blocking I/O.

Evented I/O

JavaScript itself can't actually read or write to the filesystem. This ability was omitted from the language because it wasn't necessary for its job in the browser, so Node was able to start from scratch with an I/O system based on event loops.

Node is all about "evented I/O," but what does that actually mean?

To those of us who are either not programmers or are not familiar with event loops, an analogy might help.

You're in a grocery store with a list of items to buy. You wheel your cart around the store, pick up one item at a time, put it in your cart, then take the cart through the checkout. You can optimize this slightly by fetching the items in a sane order, but you can't go get the milk while you're waiting at the deli counter.

If you're in a hurry, you might start thinking of crazy ways to speed up the process. You could enlist a number of other shoppers with shopping carts and send each out to buy a single item. This would create bottlenecks in narrow isles and a huge traffic jam at the checkout

This is clearly an insane way to solve the issue because it throws more shopping carts and cash registers at the problem than needed.

Programming languages that block on I/O often try to solve similar problems by spawning additional threads or processes (c.f. Apache, sendmail). This can be expensive in terms of memory usage, and an analysis of Python's Global Interpreter Lock shows just how expensive the traffic jam can be in terms of CPU utilization.

JavaScript and Node use event loops and callbacks to approach the problem differently.

Returning to the shopping example: If you had a group of kids along with you on your shopping trip, you could send each off to get a single item and return them to the cart. When they've all returned, you can proceed through the checkout. The time taken in fetching items would be the maximum time for retrieving a single item (the kid who had to wait at the deli counter), rather than the sum (picking up the items in sequence). Using runners for the small, simple task of fetching items is a more efficient way of parallelizing the problem than sending out full-fledged shoppers and carts.

It's not a perfect analogy by any means, but more succinct and accurate descriptions involve code or pseudo-code. Ryan Dahl's initial presentation at JSConf 2009 used the following example:

  var result = db.query("select..");
  // use result

Here the database query blocks the program from doing anything else until the query is returned, whereas in an event loop:

  db.query("select..", function (result) {
  // use result
  });

... the program can continue doing things while waiting for the function to call provide its callback.

Node provides non-blocking libraries for database, file and network access. Since I/O is not a fundamental part of JavaScript, nothing had to be taken away to add them. Python's Twisted and Ruby's Event Machine have to work around some basic language components in order to get similar evented behavior.

So, in addition to the performance wins Node gets "for free" by using the V8 JavaScript engine, the event loop model itself allows Node servers to handle massive concurrencies in network connections very efficiently. It often approaches the benchmarks achieved by high-performance reverse proxies like Nginx (which is also based on an event loop).

Sharing code between the browser and server

Using the same language on the server that you're already using in the browser has been the promise of many server-side JavaScript (SSJS) systems. The idea of "one language to rule them all" is appealing to developers who have been bounced from one language to another as each new technology emerges.

Aptana Jaxer, one of the better known recent SSJS implementations, hoped to engage AJAX developers with this model. In principle, it's a good idea. You can use the same libraries to validate data on both sides, call server-side JavaScript functions directly from the browser and pre-construct HTML DOM on the server with browser UI libraries to speed up the initial page load.

Jaxer did not see anywhere near the uptake that Node has, and this could be partly because of timing. To many, Jaxer looked like a reimplementation of ASP. It also didn't have Node's performance benchmarks, and it didn't focus on the issue of blocking I/O. Despite its interesting possibilities, Jaxter didn't reach the tipping point of forming a vibrant community.

Critical mass for Node.js

Most new technologies die not because of their lack of merit, but because of obscurity. A new language or framework needs a large enough pool of users and core developers in order for it to be sustainable. Large marketing campaigns and the backing of a big company can push a programming language or technology framework into the mainstream, but sometimes it happens from the ground up.

Node generated excitement on its first release because programmers find it interesting and powerful. It's hard to find negative comments from those who are using it.

Because of the instant appeal, there were enough early adopters to start a vibrant community and a large number projects, many of which are open source. These applications, 96 and counting linked from the Node wiki, show off many of the amazing things Node can do. They provide developers with example code and inspiration.

The wiki also lists 86 companies and startups using Node. Though it's not an exhaustive list, and many of the companies listed are quite small, there are at least two significant players.

Joyent is the corporate home of Node. It employs Ryan Dahl (Node's creator), Isaac Schlueter (creator of NPM), and other Node contributors. Joyent owns the Node trademark and copyright, and the company recently launched No.de, a hosting service for Node applications. This gives Node a stable, funded base of development resources and a spokesperson for the project in the corporate world.

The other big player is HP. Shortly after HP acquired Palm, Palm's webOS mobile operating system added Node. This was a smart move for HP, and was very well received by the webOS community:

If you think about it, Node delivers a services platform for the cloud, so is there a way that we could work together? We got together with Ryan Dahl of Node to try this out, and it turns out that Node works fantastically well on a mobile device! Major kudos should go to the V8 team for creating a great VM and to Ryan for writing efficient code that scaled down from the cloud to the device. -- Dion Almaer

Putting Node on a mobile device turns the idea of Server Side JavaScript on its head, but why not? With Node the JavaScript engine is small enough, the code is portable enough, and the programming model is light and asynchronous - a perfect combination a mobile device. It's possible that this, rather than a Rails-like MVC framework or a content management system, will be what propels Node into ubiquity.

Node is not the "next" anything

Node is something new, and that's why programmers are interested in it.

Node has changed our mental image of what a server can be. It doesn't have to be running on a high-performance blade in an air-conditioned co-lo serving millions of requests and gigabytes of data. It can be in your pocket synchronizing your contacts whenever it finds Wi-Fi. It can be caching a web application for faster, local access. It can be a peer-to-peer web server. And it can be a number of things we haven't even thought of yet.

Older posts are this way If this message doesn't go away, click anywhere on the page to continue loading posts.
Could not load more posts
Maybe Soup is currently being updated? I'll try again automatically in a few seconds...
Just a second, loading more posts...
You've reached the end.

Don't be the product, buy the product!

Schweinderl